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TECHNICAL NOTE NO. 1423

THE STABILITY DERIVATIVIS OF LOW-ASPECT-RATIO TRIANGULAR
WINGS AT SUBCONIC AND SUTERSONIC SPEEDS

By Hexrbert S. Ribner
SUMMARY

Low-aspect-ratio winge having triangular plan forms are treated
on the sssmpion that the flow notentials in vlanes at right angles
to the long axis of tho alrfoils are gimilar to the correcponding
two-dimensional petentialg. Pressure fdistributions caused by dowm-
vard acceleration, pitching, rolling, sidrsliponing, and yaving are
obtained for winse with and without dihedral. The stability
derivatives calculated from these distributions are expected to
apply at both subsonic and supersonic speeds, with the exception
of the transonic region, up to a limiting speed at vhich the
triangle is no longer nerrov comparsd with the Mach cone from iis
rertex.

INTRODUCTION

The aerodynamics of slender symetrical pointed airfoils
moving voint “or~most may be approximated as Munk approximated the
acrodynanics of slender airships (reference 1) . Tor such bodies
the flow is approximately two dimensional in plancs perpendicular
to tiie axis of symmetry. The aspumtion of two~dimensional flows
leads to a very simple mathematical procedurs for obtaining th»o
pregsure distribution. Refercnce 2 introduced thisg mcthod and
treated tirreby the slendsr nointed airfoil at an angle of attack.
The method is suite?, as well, to the calculation of the precsure
distributions dus to normel acceleration, pitching, rolling,
sideslipping, and yawing. In the present analysis the matnod in
extended. form is epnlisd te the determination of thesc pressure
distributions for a low-aspect-ratio triamsular plan form. The
stability derivatives of the airfoil are calculated from these
results.
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2 NACA TN No. 1423

The analysis of the 1lifting airfoil choved that if the airfoll
18 very sloncer (very low asmcct rotin) the rosults apply well into
the superconic renge rith no modirication for the effect of
comnressibility. The traisonic region probably must be excluded.
Th. stability derivatives of this report are eipected to have a
gimlilar ronge of anplicatien.

The principal part of this investigatlon was carried out during
Merch and April of 19u6.

SYMBOLS

\Z flicht velocity
X,7,2 rectangular coordinates (fig. 2)
u,v,v incromental flight velocities elong -, y-,

and w-axcs of fizvre 1, respectively; induced Tlow
velocities elong x-, y-, and n-axes of figure 2,
recpectively , -

p,q,r angular veloc?!tins about x-, y-, and z-axes,
rospoctively (fig. 1)

u comporent of velocity induced on uprer surface
parallsl to stream velocity

c angle of attack

B angle oi' sideslip

r dthedral angle

AP pressure diffosrence bebwesn lower and upper surfaces

of airfoil (positive in serse of 1lift)

0 density of air
. a geniwidth of triangle at distance x from vertex
b span (base of triangle)
c root chord (height of triangle)
N 5 [P/2 | -
c mean eerodynamic chord | & = - 11 (locel chord)ady = %c
= JO

e AN

A agpect ratio Q‘%Fj

:
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) X . Qﬂ = A
¢ edge slope (x ;
S area of trlangle (-—bc)

G constant defined in equation (23)
¢ surface velocity potential
n os” y/a
L rolling moment
L' normal force (aporoximately 1ift)
M pitching moment
N yawing moment
Y lateral force
F suction force per unit length of cdge
/7 L}
" Cy, 1ift coefficlent [ 7
K-E-pvzs
Cy rolling-moment coefficient Lg
Lovesp
2
. ' \ M
c pitching-moment coefficient \
"o ' Sovese
| \ /
Ca Yawing-moment coofficlent ( I I‘L
(&
_ \?TQV"'Q
CY lateral-force coefficient

"”*7

C profile-drag coefficient Drofile d:mg}
é-pVQS
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k vorticity

Ag,Ay, eee, iy Fourler coelficients

VN induced surface velocity normal to wineg leading edge
8 distance frcem ving leading edge reasurcd normal to
edge
s
distancc of cent f gravity forward of Sc¢
Xeg istance of center of gravity forward o 3o

Subscripts:

T.E. at trailin: =4

L.E. at leading cdre

R at right lcading elge :
L at left leadins edfge

Subscripted perentheges:
(), contribution dve to angle of attack
()p cortribution due to dihedral

Whenever «, &, q, D, [, and r are used as subscripts, a
nondimensional derivative iz indicatsd and this dnrivative is the

3Cy | 3Cry
£lope through zero. For exanple, Cmél = g~€5§- ; Cmq = o H
2¥)] et KQV Jg=0
. o, | 2c, 3¢, ]
S N N A R TV AR N VY
X 1 B B roon/Th
a\\EV)» p=0 \(;\r)

r=0

A dot above a symbol dsnotes differsntiation with respect to
time. :

All anglecs are measured in radians.
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ANALYSIS

SCOPE

The stabllity derivuatives troatsd nercin are listed, together
vith the values found for them, in table I. The derivations that
Tollov give the values with reference to the principal body axes

of figure 1 vith origin at the acrodynamic center (%C,0,0)- Con-
version has been made to the system of stability axes shown in
figure 3 vith origin a distance g ahead of the %c point

(tranaformaticn equations in reference 3}. Table I comprises
parallel columns which prescut the values vrelative to both systems.

GENZRAL

Consider a slender isoscelcs trian~le moving with its vertex
foremost along its longitudinal axis, &3 in figure 1, with velocity V.
cmall lincar disturbance velocitles wu, V, and W elong the x-, ¥-,
end z-axes and cnall enguler disturbance velocities p, g, and T
about the x-, y-, and z-axes, respectively, may be contemplated. Angle
of attack gilves rise to v, sidoslin, to v, and rolling, pitching,
and yaving corvespgond to p. 1, and r, respectively.

As en erample, supnose tho gole disturbance velcocity is Vv,
caused. by angls of atltack. (This case forme the subject of reference 2)
The triangular aixfeil 1s asemed to be moving forvard with velocity V
end dowvnuard with the emall velocity oV. fThe airfoil section is
assumad to be very thin; thevefors, only the dovnward motion disturdbs
the air. The trianzular plen form 15 also acsumed to be very clender
80 that the edpcs cre nearly nerellel. The flow in any plane
x = constant (coordinate system of fig. 2) due to the downward
motion is thus almosh two dirsnclonal. It may be expressed.by the
tvo-dimensional potential of a horizontal straight line moving
dotnvard vith wealocity V. The horizontal gtraight line is then
the section of the airfoil cut by the plen=z X = constant.

Planes X = constant may be taken anyvhere from the apex to the
trailing edsc.
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In case the disturbance velocity is rate of »0ll p, tho
straight 1ias 1s to bs rorarded as rotating with angular velocity p.
The other cases are somevhiat more complicated and are discussed in
¢etail in subsequent sections. In all caces, hcwever, the initial
problen is the determination ol the tiwro-dimensional surface potential
for the flovr about a straigit line with assigned boundary conditions.

With the tvo-dimensicnal surface potential knowm for the motion
of the section x = constant, the pressurs difference between the
upper and lover surfaces (positive upward) 1s obtained from

AP 7‘20Vuo (1)

In this equation u, is ths component of the vclocity induced on the
upper curface nurallel to the streanm direction and is ohiained by
differentiation of the wmotential in the ctream ¢irection. Equation (1)
expresses Bernoulll's law with the approximation of small disturbances.

The asswmption that the triengular wlan form is very slender
is expressed mathematically by the relatlon < << 1. The quantity C
is the slope of the sides of the triangle reclative to the strcam
direction end is equal to one-fourth the aspect ratio. The pressure
S distributions dorived on this asswphion can be shown to be valid
only to the first order in C. (Sce veference U, anpendix A.) Thus,

»)
terms of order C° or %K w11l he neglected in comperison with

unity vharever they appeer in the analysis.

The valicity of the analysie denends on the assumption that the
distuvrbance narameters a, B, pb/2V, qc/eV, and rb/2V are
emall in comparison with unity. Asg in ordinary lifting-line ving
theory, howsver, terms in o are of interest. Come such terms
arise without approximation in the transformation from principal
axce to atability exea, but others of order C (and hencs not
negligible) result from retention of terms of order (=. For
consistency, therefors, it has appeared necessary to neglect all
terms of order o~ in the trecatment.

In the determination of certain of the stability derivatives,
two cases vill be connidered. Cane 1 is for a configuration having
no dihcdrel and case 2, for » configuration haviag a smell dihedral
angle.

v
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DERIVATIVES Cr,, Crg» AND  Cp,

The derivative CLa is obtained in réference 2, For

accelerated motion the local pressure difference therein must be
increased by the term

AP=20§%

evaluated relative to axes fixed in the airfoil. This is

e =20 L | (2)°

da

If the (small) ansle of cttack is a, the flov pattern in a
plane cutting the airfoil at a distance x {rom the nose 1s the
two-dimensional flov caused by a flat plate having the normal
velocity oV. The svrface potential is (reference 2)

P = tova sin n

tav \[;2-.:-;2 (3)

vhere cos 1| = % and the sign changes in going from the upper

surface to the lower surface of the alrfoil. Diffcrentiation of )
wvith respect to a and substitution in equation (2) yiels

AP = 2paVa gin 1

Integration over the plan form gives thc total incremental 1ift
caused by & as

L' = ll‘Epngcd

P
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This 1ift divided by %QVPS is tho Incremental 1ift coefficient,
[~

and the derivetive of thiz ccefficlent with respest to &8 fev  is
the stebility derivative CL&' Tt is

OL =

a

iR

A (4)

The center of pressure of the distribution of AP is found to be

at x = 3c. The pitching moment ebout x = %c is therzfore

i

This moment divided by %pvgsé is the pitching-imoment coefficient,

and its derivative with resmect to & /2V  1s the stability
derivative Cmd' It is :

=-2p
Cmg =" ¢ | | (5)_

DERIVATIVES C; AND Cp
q q

An angvlar velocity of pitch q introduces a variation of
angle of attack along the x-axis,

X - =C)q
a=a°++

vhere a, 18 the angle of attack ot x = Sc. Thig varlable a is

wim

to be substituted in equation (3) for the potential,

dV\lae - y2

3

aVa sin 7

Mabanie oo any s oo ) e L B AR AP .3 T T R

= Wk i SRR
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Equation (1) for the pressure differcnce between the upper and
lower surfaced of the airfoll may be writicn

Carrying out the indicated differentiation gives

& = ?p‘\r

Vo, + q<% - %5)} csc q %% + 2pVga sin n
The integration of AD? over the area of the triangle gives

the value of lift found in reference 2 for an angle of attuck
plus the additional term

Uo;

1=1t-2?g_<1
L= 5oV oy

The coelficient is formed by divieion by %QVQS, and 1ts derivative
with reapect to q&/2V is the stability derivative CLq' It 1n

=X )

ey = 24 (6)

The Integration of %c - x)AP over the areca of the triangle

yields tiie pitching moment about the refererce point \%c,é). This

moxent is
M = - X vepecas
Eﬂp b CCV

The coefficient is defincd as the monment dividszd by %QVQSé and its
derivative with reaspect to ¢&/2V 1s the stability derivative Cp »
q

The derivative is

(M

«
£
1]
[}
| o '.AJ
A
>
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DERIVATIVE  Cy

For the airfoil in rolling motion, any section x = constant
is a rotating straight line. ZLamb (refevcnce 5) mives the potential
of the two-dimensional flow rroduced by the rotation of an ellipse
ebout its center. In the limiting cace {or which the ellipse
becomes a straight line, the surface potential is

o
n

[a)
=pa~ sin 2
fp 1
= %—Py 82 - y2 (8)

vhere p 1s the angular'velocity, a 18 the scmividth of the line,

and cos f| = %-

Equation (1) for the pressure dlstridbution takes the form

- ooy &8
AP = 2pV P
dp da
=2 =
v da dx
By use of equation (8), with C = %%, this expression becomes
AP:IprCEX“l[E"—'
ql-ﬁ
a2
= pVpCPx cot 7 - (9)

This antisymmetric pressure distribution due to rolling was first
obtained and shown graphically in reference L. Figures b end 5
herein are reproduced from this reference. Tigure 4 may be compared
with figure 3 of reference 2 which shovs the pressurse distribution
due to angle of attack.
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The spanwise loading, following reference 2, is merely
ar’ R
£ = 20V
dy
with ¢ evaluated at the trailing edge of the ailrfoil. The dis-
tribution 13 shovn in figure 5.
t
The integration of %LLy dy across the span gives the rolling
dy
noment
A "
L = +-Z0b'V
128°° P
!
Division by %pVQSb converts this moment to coefficient form,
and the derivative with respect to pb/2V is the stability
derivative Czp. It is
2
Cz ’—'-"":Tt—-L
P 32 S
-
= 32A (10)

DERIVATIVE Cy

Case 1, No Dihedral

The pressure difference across a thin airfoil in steady flow
has been given by equation (1)

AP = 2quo

vhere u, 1is the component of induced velocity marallel to the
stream direction, measurcd ealong the upper surface. IT sideslip
occurs, the stream direction 1s inclined relative to the x-azis of
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the alrfoil by the sideslip angle pB. Thus, wvith B positive for
sldeslip In the positive dirsction along the y-axic,

- . op
Uy = cO3 B 5% sin f Sy

p . 58
® 3 g oy

vhere Fo<< 1. dence,

/ ‘
AP = 2pV | P P QZ\ - 1)

\ 0% 3y /

The surface potential # fFor the disturbance velocity devends
only on the normal velocity of points of the suwlace. The potential
is thercfore wnaffected by sideslip vhen ihere is no éihedral. In
the present cnse the normal velocity 1s oV due to ongle of attaclk
and the anhropriate rotential iz that discusecd in the section
on Cp, and Cmd and given by equation (3). Carrying out the
differentietions indicated in equation (11) gives, after
simplification,

AP = 2pV2a (%i cec n + B cot ?) (12)

The syrmetric first term is the lift distribution in the
absence of sideslip. This term yislds no rollins momcnt. The
antisymnetric second tzrm contributes the rolling moment

=-X 2
L Eoveb cap
The coefficient is formed by division dby %pVQSb, and its

derivative with respect to B 1g the stability cerivative ClB
It is

Cp), = 52 (23)

3
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Case 2, Dihedral Angle T

If the wing has a small dihedral angle I (casc 2), the angle
of ettock on the lef't panel is recduced in sideslip by the amount P
and the angle of attack on the right panel is increased by that
amount. The flow pattern in a plane cutting the airfoil at a
distence x from the nose can be obtained by a slight modification
of the classical thin airfoil theory. (See reference 6.) fThe
left edge and right ecdge of the section at = are to be ldentified,
respectively, with the leading edge and trailing edge of the section
of thin eirfoil theory. The section is regarded as a small
deviation from itz chord. A diztribution of vorticlty along the
chord of tha section is imagined. Paraphrasing Glavert (refercnce 6),
the indvced velocity w is cetermined for noints on the chord but
may be taken to be the same Tor the corrcsponding points of the
gection itself. The direction of the resultant volecity edjacent
to the airfoil rwust be parallel to the surface so that at each
point of the leit panel

¥=ofl +a (1hra)

<1

end at each peint of the rigat panzl

$= fr + «a (14b)

The potential corresponding to a 18 alrecady mown; therefore, only
the case for o = 0 nced be treated.

The vorticity assumed in the thin airfoil theory (reference 6)
has a net circulation to satisfy the Kutta condition at the trailing
edgz. The addition of a term -?V(go + %A1> cec 1 (with n written

for Glauvert's 6) eliminates tho circulation while retaining certain
mathematical prowerties. Vith this added term the vorticity is
glven as

k = 2V(Ag cot n - E% csc n + éi“ A, sin mn (15)
: 1 /




R NACA TN No. 1422

The velocity potential on the upper eurface of the section is
relatsd to the verticity k by

1 a
'¢=§f -k 4z
y

The angle 7, originally identified with Claucrt's 6, 1s now
defined differently so tnat y = a cos n. Then the integration
of the equation for § with dy = -a sin 1 dq gives

0

2 n -+ 1 n-1x

A <= & [ 3 oo
§ = evi-A, sin n + ﬂl pin 2n + ) f\l’—[’m b+ 1)y _ sin (n 1”] (16)

2

Equation (16) expresses the upner surface motential Tor an
arbitrery distribution of induced vertical velocity alonz a line
in two-dimenazional flow without circulaobion.

The coefficients in equation (16) are ~till to be evaluated.

The calcvlation given on pessa 88 to 20 of veference 6 when
applied to equetion (15) lerds to

v <
== -Ao + An coo nn
v

o

for the ratio of the induced dovmwerd velocity to the stream
velocity. Tho coefficients are glven by the theory of Fourier

gerics es
n
-1 A
LML

Ana

-

- (17)

2o

¥ cos nn dn

o ' 3
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For the sideslipping airfoil section with dihcdral angle, the
boundery conditions on w/V has been given in equations (14a)
and (1lb). By equation (17) ths coefficients in this case are,
for a =20,

B =0
(16)

E3 WP -
Ap = o gin

With the coefficients'given in equation (18), then, equation (16)
represents the additional npotential duc to dihedral that may be

N
substituted in equation (11), The term 2 %g is found to be of

the order 62 and thus mey be neglected for the present purnose.
Integrating the sressure chordwise gives the incrementel spanwise
load distribution caused by dihedral as

' T'E‘
% = AP dx
’ L.E.
= 20y 5.

The rolling moment is

L= (j: %% dy)T.E.
= (pVa2 J;O $ sin 2n dﬂ)‘l‘.E.

i [g.pv2a3 (Al B A3):’ T.E.

TR TS S T N SN B g o N " ST okt T rr ey
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By cquation (18) 2 = L ana a5 - -%gi,'and at the trailing

gdge a= g. Thus, for the present cese
=~ 3
L = i—e'ﬂvzb BP

The coefficient is formed by divieion by o725 and 1ts derivative
&<
with regpect to B is the stability derivetive CzB for zero angle

of attack. The derivative is
/
|

L1
Cra)p = ¥

The complete stebility derivative is obtained by odding to the
preccding squation the contribution of angle of attack givern in
eguation (13) so that

Czﬁ = '%a - %P (19)

DERIVATIVE Cq_

Case 1, No Dihedral

The reference point for these calculations is at a distance %c

from the vertex of the triangle, measured along the x-axis. Let the
8tream velocity at this voint be V. Then, iT the yawing velocity
1s r, the longitudinal velocity at (z,y) is V = ry and the

sideslip velocity is -»{x - gc\ Lot these nxpressions replace V
end BV, respectively, in sguetion (11) so that

Javy =2pI2V - ry) o1/ I‘(..{' gc) @.ﬁ]
L 3 3795 ]

Sl ok a s . a R ol TR Ty -
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The appropriate potential ¢ 1is that given by eguation (3),
vhich is

¢ = ava egin n

Carrying out the indicatzd oporation gives

AP = QQ[VQCIC cec 9 - er_Gc - %c + uC) cot n‘:]l (20)

vhers C = 23 << 1. The torm aC = xC2 end ic negligible in

~bn

comparison with x to the Tirst order in C.

The aymmetric cossernt term 1s the 1lift distribution in
straight Tlight; it yields ro rolling moment. The antisymmetric
cotangent term contributee the rolling mcoment

nc na o
L= ij f rVaGc - 13-0) cot v 7 éx dy
0 J-a
With n = arc cos ‘f;-, this moment is evaluated as

L = i———erc’ 2

The coefficient is defined az the momusnt divided by %QVEST) , and its
derivative with reopect to rb/2V 1z the stability derivative o)

for zero dihedral. It is

(Cz ) = “% (21)
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Case 2, Dihedral Angle T

In the section on Cj dihedral was chom to add an additional

term, vhich 15 given by equation (16), to the notential, where the
constants A, are given by equation (13). In the oresent section

A e i

, N
the varlable sideslip angle —5(? - %c} renlaces thic constent
/

cideslip angle B of the section on CIB- The rolling noment due

to the additional term in thus

1
L = "‘!'g—p" 2&3@.1 - A- i
L&

AL Pl

e sl A

as was found in the section on C,_ . By cquation (1),

with ="£/& - ga » i
V\ 3/’
4 N
Al = 'h—r—‘- r—(x - g(‘}
1 PR,
_hpr/l .20
CRETEICOR >

The substitutior of the values of a, Ay, and Aq at the trailing

edge, where a =

N

and x = ¢, gives

1 <3
. = X
I §Epv Ph ¢

The coefficient 1g formed as before by division by %pvzsb, and 1o

derivative with recpect to rb/2V is

',C> ,—_.?-;I‘ _
&\Zr r 7 )




NACA TN No. 1k23 19

This result must be added to the result for case 1 {no daiheéral)
to give the total value of the stabllity derivative, as followo:

- Q4 2 ore)
Czr OA + 9.[' ( P)

DERIVATIVES C AD C
Tp Ty

Cace l? llo Dihedral

The slde force and yawing monent ralative to body axes are
contributed entirely by asucticn alonz the leading cdge of the wing.
This suction may bo evaluatzd Dy conzidoring the trianguler wing to
have a gmall thickness s30 thot thoe scctions x = conrtant are
ellipses. The leteral cormonent of the procswre diztridution is
determinzd and integratsd. 'Thic siorcoach i glven in detall in
reference U for the case of rolling at zero angls of attack, and
its extension to the case of rolling with a small anrle of attack
vas mace in the original deterininctlon of CYh ané. Cp in the

present analysis. A very much sinpler method. of evalvating the
suction isc sugacsted in reference T, however, and thig method is
adopted hcerein.

Consider a condition for vhich the induced surfece velocity
normal to the edge is of tha form

G .
Ty = 4;-:;;_ (23)

in the immediate ncoighborhood of the edge, vhere s 1is cistance
from the ¢dge and G 1is & constant. Teferonce 7 points ont that
for such a flowv there is a guction force per unit length of edge
vhich is

F = 1pCo (24)

in an incompressible fluid. ¥or the narrov triangles discussed in
thls paper the component of the strzam volocity normal to the edges
ls Inherently small cornared with the veloncity of sound cver the
range of stream Mach numbers consicercd. Thavs, no compressibllity
correction is nacesgary.
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For the triansuler wing in reolling motion the induced velocity
component w has been obtaincd as & factor In eguation (9) ané may
be wvritten

Angle of attack vill give the additional contelbution (rcference 2)

uw = f'——:fégé;::r
NENA
2 (LY

_v; \x

The total induceld velocity ccmponent u  on the upper surface 1s thus

»‘ .2( 1N
C{aV + =pyr
u= - )

[ N
\e® - (%)

Very near the edge thip exprescion iz apvroximately

Rt
¢372 (o7 * Lyox)

21/2 \ ’C - lii

vhere the plus sign refers to the right edge and the ninus sign to
the left cdge.

u =

If a similar calculation ig mads for v = 3£, 1t is found that

Qs
‘4‘&

as the edge is apvroached the resulitant induced velocity ° u? + VE

becomes normal to the edge. Thus, the normal vcloecity near the
edge is

G
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to the first order in C. The nervendicular distance of point (x,¥)
from the edge is, to the smamo degree of accuracy,

o=+ 2D

/
The induced surface velocity very near the edge may therefore ve
expressed apnroximately as 3

HI<

which 18 of the form of equation (23) alresdy conoidercd. The
suction force per unit length of edge by equation (2k) is thus

F = ﬂpG2

Cx<2'¢2 + ljip202x2 i “VPCf>

=X
2°

vhere the pluz sign refers to the right esdge and the minus sign
refers to the left edge.

The lateral component of this suction force is given by

c
Yaf (Fr - F1) &
0

= ’gtpcec3an

TR T T
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The coefficient is formed by divielon by %gVPS, and the derivative

with respect to pb/ZV 1is the stability derivative Cy - It is
D

- . 2
= Znc (25)
(%), "5
The moment of the leading-edge cuction about the vertex of the

triangle is aporoximately, for e << 1,

Cc
(Fr - Fr)> &

éz

L]

'
5—

= - Toe2cl vy

N

The moment ebout the reference point (%c,§> ig

The moment coefficient is formed by division by %pVQSb, and the
derivative with respect to pb/2V is the stability derivative Cnp.

It is

(Cep), = "SR (26)

Case 2, Dihedral Angle T

To the first order in the dikedral angle ', dihedral will not
change the prossure distribution. The inclination of the wing panels,
hovever, will give rise to a latcral force component, as follows:
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I Y D

for the right wing phnel, and a similar expression with opposite
sign for the lci't wing panel. The pressure difference AP has
been svaluated in equation (9) of the section on Clp' With this

value tho integration pives

Y = --24VIbp

[ )
“’rl'_'

Division by %QVCS and. differentiation with respect to pb/2V give

the incrcrent to the otability derivative CYP caused by 4ihedral as

Ch&bp i -%AF

By addition of the value obtained for the case of no dihedral, the
complete derivatlve Cy 1s
P

- 2 A
Cvy = =fta ~ 2P (e7
Yp 3 3 )

The pressure distridbution is such that along eny radial line
from the vertex tiic precnure increases in nroportion to x. For

such a digtribution the center of pressure on cach penel iz at gc

from the vertex. Ths yawing moment about the refcrence point (%c,(a
is

Nn-(\gc-%\'x’

= -]%mpr3Cp
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Division by %pvesb and differentiation with respect to pb/2v
give the increment to Cnp cauged by dihedrnl us

(), = 7

By eddition of the value obtained for no dihedral the completeo
derivative 1s thcerefore

o, I
Crp = 08 * 18 (28)

DERIVATIVES Opg A Cp

Case 1, No Dihedral

A little sideslip cen readily be showm to have negligible
effect on the synmetrical distribution of suction along nost of the
leading edge. Near the trailing edge some modification may be
expected at subsonic speecds due to the altsred direction of the
trailing vortex sheet. Any lateral force and yawving nmonent would
have to come from the small disturbzd region. Ixemination indicates
that such a force or nmoment wouvld be of order G;B und hence zero
to the first order in .

Case 2, Dihedral Angle T
)

The contribution of dihedral to the velocity comnonent u
induced in sideslip ic obteined by differentiating equation (1€)
with respect to x. A term oVC csc . must be added for the
effect of angle of attack. After insertion of the constants from
equation (18) the total velocity ccmponent u 15 obtained as

u = aoVC csc n + %BFCV‘[;i%rgﬂ + coc 2n cot 1

0 . -

e r . . ;

- oin Dtigin (n + V)n . gin (n - 2)n! o

ZZL_ 2{_ n+1 n-1 } (29)
3
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The only terms that approach infinity ncar the edges (that 1is,
as n->0 or m) are the cosecant term and the cotangent term. In

that region both terms behave like \Jgg, with appropriate sign,

vhere 8 1s the perpendicular distance from the edge. The velocity
component w there may thus be written

2an ICx
= 1+ = Viyjz£
v (a :rBP) VQS

vhere the plus sign refers to the right edge and the minus sign to
the left edge.

If a similar calculation is made for v = %é, it is found as
y
before that near the edge the normal induced veloclty vy 1is

approvimately equal to u/C to the first order in C. Thus, vy 1s

\

of the form J%:, and the corresponding suction force per unit length
g

edge is F = ang, as indicated in a preceding section. Substitution
of the expreesion for G, neglect of terms of the second order in B8,
and simplification gives

F = gpv"zc:c@? + %aﬁ[) (30)

The lateral component of this suction force is
. .
Y, o f (Fr - F1) &
o]

= 20V°Cc2apr  (31)

There is an additional lateral force due to a component of
the pressure acting on the inclined panels. The part of the
pregswre caused by dihedral will contribute terms of order €.
To the first order in I', then, only the nressure distribution

e G AT Ty o Sashiab b st hdaki { sonby 3 " PTIR ™ T U S T T YT Y T e Spren =
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in the abaence of dihedral (equation (12)) nncd be considered.
Further, only the antisyumetric cotonsgent teim will contridbute to
the latcral force. The irncremental lateral force ic thus

T

-2r ua%pvgﬂ cot 1 dy ax

ﬂ
'hpvgaﬂf‘f J Cx coz 7 an dx

-2oveCc2apr (32)

The total lateral force to the first order in I is Y9 + Yp.

Thio sum I8 seen to be zero, and hence the lateral force
Gerivative CYB is likewisge zero.

Equation (12) shows that sidesliv gives rise to a pressurs dic-
tribution that 1s constant alon: radial lincs Trom the vertex ol the
triangle. (Such & rreagure distributicon definec a conical flow
field.) Equation (12) 1s for zero dihedral, but equation (16) leads

to the same behavior Tor the triangle with dihadral. The center of
2
pressule on 2acin panel of the triangle will be on the line x = %c-

So also will the center of pressure of the lcading-cdge suction.
There is thus no yawing moment about the reler:nce point (%c,é), and

the steability derivative Cn‘3 is zero.

DERIVATIVES Cy  AND Cp
iy iy

In the cass of yawing motion the local sidesliv velocity
is r<§c - ). The suction F per unit length of the leeding edge

is obtained by substituting this local sideslin V“lOCity for gV
in egnation (30) derived for sideslip, as follows:

. e x Ty Yy -y
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I 4 2-:.&&1;‘_[‘2_5-]
F §pVQCx{% =Y (éc 3 }

(vhen B varies with x, as in the present case, squation (29)
requires an additional term in %3%’ proportional to I'e This term

is finite at the edgec and, therefore, does not contribute to the
expression for Y.) '

The lateral component of thls suction force is

C
hs 1 =f (Fr - F1) dx
0

/
=0 (33)
The antisyrme*ric cotangent part of the pressvre distribution
in equation (20) mey contribute & lateral force beceuvse of the
inclination of the panels. To the first order in I, +this is the
only contribuvtion, accordins to the reasoning in the section
on Cy and CnB. The contribution is, to the first order in C,

thurI‘J J :: - —c\ cot n dy dx

c pnf2
= LpVorrl (:' - —c)Cx cos 7 dn dx

0 x/o
=0 (34)

The total latcral force caused by yawing motion iz ¥y + Yo.
The lateral force derivative Cy_ is accordingly zero.
r

The leading-edge suction gives rise to a pure yawing couple.
This coupls 1is convenlently obtained by computing the moment of

the suction force about the vertex of the triangle, as follows
(c® <« 1):

o . T T T T

IR TR 1A XTI T X YT A I T T A T T T et Y e e
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= %pv arrce? (35)

The pressure distribution on the inclined vanels of the wing
will have a leteral component that likewice contributes a purc
yawing couple. TFrom equation (20) the coupie is, to the first
order in C,

nc na |
Ngz-hl‘pVaJ f G-%c) cot B x dy dx
ouo . bl

pc pn/e .
~4I'oVaC “ f ( - :%c\ ** cos n dn dx
/

- %{:ﬂ)‘:;v.rI‘Ccl‘L (36)

A third yawing counle will be contributed by skin friction.
(Skin friction has not been considered in evaluating the other
stability derivatives becauvse 1ts direct contribution iu expected
to bs vnimportant. The indirect sffect of skin friction in
influencing the vpressure diztribution via the boundary leyer may
indeed be imporiant, althongh it is not treatsd.)

The skin friction couple is approximately given by:

N3 ff Dy 57V E(

p 2
wiere V,; 1is the resultant velocity and VRQ = (Vv - ry)2 - e (x - %c)

g\)

w
N\
(3]
N |
(]

-rx--c)

= )
v

the scction drag coefficient vhich is taken equal to wing prcfile
drag coefficient.

B 1s thc locel sideslip enpgle and equals and CDO is
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To the first order in r this oxpression is

-

Ny = -lpC ) .a-!§r (; - gﬁ>2 + 2y2 - ng } dx dy

-0, L -t

= -é%erCDOCcu(l + 6C2)

The total yawing moment caused by yawing motion is Ny + Fp + Ng,
vhich is just N3 because N and Ny canccl. The coefficient 1o Ng

divided by %oVQSb and the derivative with respect to %% is the

atability derivative Cnr. Carrying out these operations gives

B\
| Cnr = ~<%‘ + g—A-’EJCDO (37)

A similer calculstion shows that the side force due to skin
friction is zero.

REBSULTS AND DISCUSSION

The values obtained for the stability derivatives are
summarized in table I with respect to two oystems of axese« One
system 1s the principal body axes of figure 1 with origin at tho

aerodynamic center (%c,O,d}. The other system is the stability
)

axes shown In figure 3 with origin a distance xcg ghead of

the %c point.

Those stability dorivetives apply to an isolated trianguler
wing in the limiting case of acpect ratio apmroaching zero. Applica-
bility decreases with incrcasing aspect ratio, and an aspect ratio 0.5
is estimated as the upper limit of utility. The mathomatical validity
at the very low aspact retios may be offset, nerhaps, by error due to
the neglected boundary layer.

gy
y
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The arguments for the effects of compressibility presented in
reforence 2 can be carricd over to the prezent vork. The stability
derivatives presented herein, therefore, are expected to apply at
both subsonic and supsrsonic speeds, with the cxception of the
transonic region, up to a limiting sveed at vhich the triangle is
no longer narrov compared with the Mach cone from 1ts vertex.

The over-all pitching-moment derivatives chould be little
affected by the eddition of a fuselage, the nose of which does not
project much bsycnd the vertex of the triangular ving. The wing
will orient the flow along the axlis of the Tuselage and thereby
vill eliminate much of the unstable pitching moment of the fuselage.
The flow vwill continue to be essentially axial along the part cf
the fuselage behind the wing because the low aspect ratio yields a
dovnwash angle substantially equal to the anglo of attack.

Theoretical considsrations supgest that the unstable yeawing
moment of the fuselage will add to the value of CnB for the wing

alones Little effect on CnP” or Cp, 1is expected. Little effect

on the rolling-mcment derivatives is expccted if the wing is mounted
centrally on the fuselage. Ligh-wing or low-wing arrangements,
kowever, should have pronownced effects on the effective dihedral.
These conclusions are only tentative, and a proper evaluation of

the ving-fuselage intorference rust be the subject of further
investigation.

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Aercnautics
Langley Field, Va., July 15, 1947
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) STAPILITY LERIVATIVES OF LOW-ASPECT-RATIO TRIANGLE

TO FIRST ORDER A, «, AND T

Stebility Pl‘ingipﬁl axes . Stedility axes
derivatives (origin at gc from vortex) , G}risln at distance Teg ahead of §c)
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v v,Y

Figure l.- Velocities, forces, and moments relative to
principal axes with origin at gc,

3

R P

Figure 2.~ Axes and notation used in analysise
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, forces, and moments relative to

Figure 3.~ Velocities
stability axes with origin at BC - Xcge Principal

axes of figure 1 dotted in for comparison.

R T TR T " -



o iy IR 4 T

'NACA TN No. 1423 "

Figure l.~ Distribution of pressure difference caused by rollinge.
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Figure S.- Distribution along span ¢f normal force caused by rolling,




